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ABSTRACT

Two primitive variable, pressure based, tlux-split, RNS/NS solution procedures tor
viscous tlows are presented. Both methods are uniformly valid across the full Mach
number range, ie., from the incompressible limit to high supersonic speeds. The first
method s an "optimized" version of a previously developed global pressure relaxation
RNS procedure. Considerable reduction in the number of relatively expensive matrix
inversion. and thereby in the computational time, has been achieved with this procedure.
CPU umes are reduced by a factor of 15 for predominantly elliptic flows (incompressible
and low subsonic). The second method is a time-marching, 'linearized' convection
RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single
LU inversion at the intflow cross-plane. The remainder of the algorithm simply requires
back-substitution with this LU and the corresponding residual vector at any cross-plane
location. This method is not time-consistent, but has a convective-type CFL stability
limitation. Both formulations are robust and provide accurate solutions for a variety of

internal viscous tlows to be provided herein.

1) Shailendra Kaushik, Project Engineer. EASi Engineering, 30800 Telegraph Rd.. Suite 3700. Bingham
Farms. Michigan 48025

2) Prof. Stanley G. Rubin. Aerospace Engineering, University of Cincinnati, Cincinnati, OH-45221-0070



1. INTRODUCTION

Various asymptotic approximations to the complete Navier-Stokes (NS) equations
have been used to provide detailed, efficient and accurate tlowtield descriptions tor a
significant class of large Reynolds number (Re) flows [1-5]. If these approximations are
combined in a single system of composite equations, the resulting time-dependent system
is termed the Reduced Navier-Stokes approximation (RNS). The RNS system in
appropriate (§,n,{) coordinates is such that only streamwise or & diffusion terms in the tull
NS equations are higher order and therefore neglected throughout the flow domain. These
terms are retained in a deferred corrector (DC) which may be recovered when necessary.
The lowest order RNS approximation consists of the full Euler equations plus all the
boundary-layer diffusion terms required to satisty appropriate no-slip boundary conditions
on various solid boundaries. In this manner, all acoustic (elliptic) influences contained in
the full Navier Stokes (NS) equations, are retained. The resulting RNS system allows tor
upstream or elliptic influence and contains all the dominant physics associated with large
Reynolds number strong viscous-inviscid interactions. A pressure based flux-splitting
procedure is applied to the Euler component of these equations. This leads to a global
relaxation procedure for the pressure, and for velocities in reverse flow regions. The
convective and acoustic fluxes are treated independently. Therefore. the appropriate
domain of dependence is automatically represented by the ditferencing of the convective
and acoustic (pressure) gradients.

Two efficient, primitive variable RNS/NS solution procedures. valid across the full
Mach number range, are presented in this paper. The primary teatures ot these solvers are
(a) that the boundary conditions and discretization procedure are controlled by the physics
of the of the lowest order terms of the RNS system: (b) that the higher order diffusion, DC
terms,in the NS system can be introduced if necessary in the tinal RNS inversion to obyain
the full NS solution; (c) that they possess sharp shock capturing properties: within three
erid points; (d) unlike other Euler-based Navier-Stokes methods, that become
unconditionally unstable in the incompressible limit. these formulations pertorm etticiently
for all Mach numbers from incompressible to high supersonic and: (e) a pressure velocity

flux-split discretization is implemented in both of these solvers.



The first of the RNS/NS solvers is an optimized version of a global pressure
relaxation RNS procedure previously presented [1-3]. The main drawback of the original
algorithm is the cumulatively high number of expensive LU of cross-plane coetticient
matrix inversions that are required. At least three non-linear Newton iterations or LU
inverions are needed at each cross-plane. For three-dimensional (3D), turbulent tlows,
wherein fine grids are needed to resolve the thin boundary layers, the matrix inversions
become computationally expensive and impacts adversely on the efticiency and speed of
the solution procedure. One of the primary goals of the present study is to minimize this
cost. Toward this end various optimizational techniques are adopted: (a) recast the
governing equations in "delta” form, so that a single LU inverse at a given cross-plane can
be applied as an approximate LU for several subsequent stations downstream; (b) global
under-relaxation of flow variables, with time terms in the governing equations (¢) local
under-relaxation of the flow variables during the non-linear iterations and; (d) a judicious
initialization of flow variables at a given cross plane with those computed at a preceding
station in the prior sweep. With these techniques considerable reduction in the required
number of LU inversions. and consequently in the computational time results. For

instance, the optimized version of the code runs about 15 times faster than the original

"unoptimized" procedure for laminar, incompressible flow in a 90° curved duct, and a
33x41x41 grid. The optimized code requires a single LU inverse to attain a steady-state
solution. This compares with 174 inverions per sweep for the original version. In this
particular case, 32 global sweeps are required to converge the maximum residuals to the
prescribed tolerance level. Note, that it requires exactly "imax-1" number ot global sweeps
for incompressible tlows to converge to machine accuracy; where "imax" is the number of
stations in the streamwise direction. as the downstream pressure boundary condition
traverses a single grid cell for every pass.

The second algorithm, i.e., 'linearized' convection model, is a time-marching RNS
procedure. This is a straightforward algorithm that involves just a single LU inverse at the
inflow cross-plane. The method marches in pseudo-time with the application ot a single
back-substitution. for the LU inverse and the corresponding residual vector at each cross-

plane. during a given sweep. With this mathematical operation, all the flow variables are



marched a single time-step in a given sweep. Note, that this procedure is not time-
consistent. This process of time-marching, is repeated until a steady-state 1s attained. A
convection-only CFL type time-limitation, discussed in reference [4-5] for the time
consistent algorithm, is applicable for this method. Since tlow variables at all cross-plane
locations can be marched a single time-step simultaneously t.e., they are fully uncoupled
numerically in the axial or tlow direction, this procedure lends itselt to parallelization. This
method is particularly efficient for incompressible and low subsonic Mach numbers. For
supersonic tlows, the "optimized' pressure relaxation procedure is more suitable and
therefore preferred.

Both methods implement a pressure velocity tlux-split discretization [1-3]. The
RNS/NS system of equations is quasi-linearized and discretized as described previously in
[4.5]. A system of simultaneous algebraic equations (for the cross-plane in three
dimensions) is solved with a sparse matrix direct solver (SMDS). The use of this solver is
dictated by robustness and consistency considerations discussed in previous papers [1-3].

Both methods have been validated through a series of three-dimensional internal
flow configurations: (a) Laminar and turbulent, incompressible tlow in an S-shaped duct;
(b) laminar and turbulent, compressible flow in a symmetric, square cross-section choked
convergent-divergent nozzle and, (c¢) turbulent, supersonic tlow in a generic inlet
geomeltry.

The algebraic Baldwin-Lomax eddy viscosity model, modified to include multiple

wall etfects, is employed tfor turbulence closure.

2. GOVERNING EQUATIONS

The reduced form of the Navier-Stokes (RNS) equations is employed for both of

the tlow solvers considered herein. All higher order axial diffusion terms are retained only
in the deterred-corrector (DC). The DC is explicitly introduced in the tinal RNS inversion
to obtain a full NS solution, see ref. [10]

In order to obtain the final RNS system of equations, the tull NS equations are
transformed from Cartesian into non-orthogonal generalized curvilinear coordinates in

strong conservation form. These are as follows:
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Energy equation (constant total enthalpy):

v

-1
Mozo(l—qz) (5)

2

=1+

Equation of State:

g1

P
T = Wp (6)

By eliminating temperature T from the equations (5) and (6), the tollowing relationship is
obtained:

2MEP
p= 2 p)
2+(l-y)MS(1-g7)

It is this form of combined energy equation and the equation of state that is used in the

present study. In the incompressible limit, the non-dimensional density is set to unity. The
viscous terms, viz, T7, Ty, T}, T, , elc., appearing on the right-hand-side (RHS) in

equations 1-4 have been discussed previously in [6]. The definitions of the metric

y. Mx, ¢y, etc., and the contravariant velocities U. V. and W

ALy

quantities. e.g., &y

appearing in these equations have also been defined in [6]. The RNS set of equations are
obtained from the full NS equations by simply dropping the higher order ditfusion (3-
derivatives) terms. These are retained in the DC. The final torm of the momentum

equations used in these solvers are obtained by taking the covariant momentum balances in

the &,n. directons.



3. DISCRETIZATION

The pressure velocity flux-split technique, originally developed by Rubin and Lin
(1.7]. is applied to the RNS equations in generalized non-orthogonal curvilinear
coordinates. Fig.1 depicts the discretization location of the equations and their appropriate

groupings, at a typical cross-plane, of a given axial station £=&;. The &-momentum and the

energy equations are discretized at the grid points. The continuity equation is cell centered
and the 1 and {-momentum equations are located at the half points. All &-derivatives in
the continuity equation are backward differenced and the cross-tlow (1,%) derivatives are
two-point trapezoidal ditferenced. All axial convection terms in the momentum equations
are upwind or flux-vector differenced and the cross-flow convection terms are either 3-
point central differenced or two-point trapezoidal ditferenced. This depends on the
location at which these derivatives are discretized. All diffusion terms are second order
accurate three-point central differenced. The streamwise pressure gradient Pg in the &-
momentum equation is flux split into positive and negative contributions in accordance

with the pressure flux-vector splitting technique [1]:

Pg' = a( Pg’ )Hyperbolic +-a) Pg' ) Elliptic
or
P.-P._ P .-P

P. = 1[ 1 ,l 1 +(- 1)( H—I: 1]

S = Ag i+ Ag
or equivalently
p. = i hi

S AS (8)
where P is located at the same grid location as the velocity u,, and is given, to second

!

order in AS, by
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where (10)

In equation (8) the term w(P.

P.—P
5)Hyperbolic or @ 1(—1 f—lj retlects the initial value

Ag

[—=

or the parabolic/hyperbolic component in the streamwise pressure gradient. The term

)(Pi+1 —Pz’

4

(l_w)(P;’)Elliptic or(l-a)i ] retlects the upstream intluence or the

+ °

9 p—

boundary value or the elliptic component ot the pressure gradient. The discretization of P:
implies that the "unknown" pressure Pj at the axial (marching) location i, is staggered at a
distance (1-w)AE upstream of the velocity uj, v;, and wy. The pressure £ at the grid point i
is given by eqgn. (9). In the incompressible limit, @=0, and the pressure at the grid point { is

P=p

: 1 For supersonic tlows, w=1 and F = £. By neglecting the negative tlux

contribution of the streamwise pressure gradient, ie. by retaining only the hyperbolic

component in Pg

P -P
[ i Tl ] the multiple-sweep global pressure relaxation RNS formulation

reduces to the single-sweep PNS (Parabolized Navier-Stokes) formulation. The

discretization of cross-tflow pressure gradients Pn and PC in the n-momentum and the -



momentum equations is quite straightforward and is given by two-point trapezoidal

ditferencing.
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Fig.1 Implementation of boundary condition in a &, cross-plane for an internal flow

geometry.

4. BOUNDARY CONDITIONS

The appropriate boundary conditions, consistent with the discretized system of RNS

equations, are as tollows:

inflow boundary Z=¢,):
In the "streamwise" or & direction, at the inflow boundary, all tlow variables or &

denvatives are prescribed as follows:



u= u,-,,(n,é')

v = Vl'n(’7~§)

w=w, (1.0)

M = M,, (zero for incompressible flow)
p =P, (1.5)

P.. =0 (for internal, compressible flow)

A

VA
Jve

For incompressible flow calculations, the inflow pressure is not prescribed, but is

calculated from P, ; = P,. For subsonic flows, the pressure P,_, as defined by eqn. (9),
still retains some influence of the prescribed intlow solution P;.j. In these calculations the

value of "P;_l changes to reflect the upstream pressure intluence, see Rosenbaum and

Rubin [8]. This allows for adjustment of inflow mass through changes in P; and hence pjp,.

outflow boundary ((=¢,,,):

At a subsonic or incompressible outflow, 0< Mc:‘ <1, without tlow reversal, only the

pressure or pressure gradient is required. For the PNS "supersonic” step, the negative
pressure fluxes are not present, and therefore, the pressure is calculated at this boundary.
Due to the presence of a "subsonic" boundary layer region, even in supersonic viscous
flow cases, the pressure at the exit boundary, computed from the PNS step, is prescribed

as the outflow pressure boundary condition for subsequent RNS steps.
For zero flow reversal at the outflow, the velocities are calculated trom the solver.

For small reverse flow at the exit, the velocities can be prescribed from available
experimental data, or computed by neglecting the negative velocity tlux at the outflow
boundary. This is similar to a FLARE approximation used in boundary layer theory. For

the present study, the FLARE approximation is applied only at the outtlow boundary.



wall boundary:
No slip and zero-injection (u=0, v=0, w=0) for viscous flow computation.

Zero-vorticity condition for inviscid/Euler computation.

Pressure is computed at all wall grid points using the special regroupings discussed
in [4,5].

The density is computed at all wall points from the constant stagnation enthalpy

condition.

free boundaries (external flow):

The inplane velocities, pressure and density are specified. The velocities normal to the free

boundary are computed.

5. SOLUTION PROCEDURE

For both procedures considered herein, the discrete system of fully coupled RNS

system in generalized, non-orthogonal, curvilinear coordinates, at a given cross-plane, 1s

written in the following delta form: [A]{(Sx}n+l =(r)"; where [A] represents the sparse

- ) n+l . ) .
cross-plane coefficient matrix; {&x} represents the solution vector in delta form and

(r)" is the right-hand-side residual vector, evaluated at a previous time or iteration. Since
the primary goal is to drive the local cross-plane residuals to a prescribed tolerance level,

an "exact” inverse of [A] is not required. An approximate LU that is "close-enough” in

character to the exact one is found sufficient. In other words, in delta form, an exact LU
of the coefficient matrix at an arbitrary cross-plane, can successfully drive the residuals, at
several subsequent "streamwise” stations, to an acceptable level of accuracy. Furthermore.
if the "optimizational" techniques, mentioned in the Introduction of this paper, are
implemented appropriately, then just a single LU of the coefficient matrix, at the inflow
cross-plane, has been found to be sufficient for the entire computation. Although, this
might result in an increased number of back-substitutions to resolve local non-linearities,

the overall cost is considerably reduced. Back-substitution operations, with an



approximate LU, is applied iteratively until the local non-linearities are resolved and the
local residuals have achieved a prescribed tolerance level. If during this iterative back-
substitution process the residuals show signs of growth, or if the local convergence of
non-linearities become excessively slow, a new LU is initiated. In addition, the number of
required LUs can be further reduced with the aid of under-relaxation, both globally
(inclusion of time-terms) and locally. This process of back-substitution and LU
decomposition is continually repeated until there is local convergence of all residuals at all
the axial stations, in a given sweep. Multiple sweeps are generally required to converge all
residuals globally.

For the linearized convective time-marching RNS procedure, only one LU inverse
at the inflow cross-plane is required. This linearizes the non-linear terms about the
prescribed inflow conditions. Unlike the global pressure relaxation procedure, the non-
linearities are not resolved locally but in a global fashion. A single back-substitution
operation is required at any given axial cross-plane for all axial sweeps. As a result, all the
flow variables in the computational domain evolve in pseudo-time through a single time-
step. This process is repeated until steady-state conditions are attained. A convection-only

CFL limitation is applicable, see ref. [4-5].

Fig. 2 depicts the comparison of convergence histories for the linearzied convecton. tume-
marching model and the fully-implicit, pressure relaxation procedure. The flow problem
under consideration is an incompressible, laminar flow in an S-duct at Re=790. The gnd
has 31 stations in the axial direction and 21x21 in a cross-plane. As seen in the figure, the
convergence history for the linearized convection model shows a more gradual downward
trend than the pressure relaxation model. However, the computational time required by
both methods to converge to a steady-state is about the same ie., approximately 50
minutes on a RISC/6000 workstation. As noted earlier, apart trom the ditterence in time-
steps used in the two methods, the linearized convection model does not converge non-
linearities at each axial location. This is required in the pressure relaxation procedure. The
gain in time by the former method is clearly outweighed by the need for a larger number of

axial sweeps or "time-steps” for convergence.



Compansan of convergence histones for Linearized convection & pressure relaxation RNS procedures
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Fig. 2 Comparison of convergence histories for the Linearized convection model and

the pressure relaxation procedure for a laminar, incompressible flow in an S-duct.

Both procedures are quite robust and have been implemented in the same code.
This provides the flexibility to switch from one algorithm to the other for a given flow

problem in a single run.

6. RESULTS

In order to validate these RNS/NS flow solvers, a variety of 3D internal flow
configurations, ranging in speed from the incompressible limit to high supersonic Mach
number, have been investigated. An algebraic, zero-equation Baldwin-Lomax model.

modified to handle multple walls, has been applied in all the turbulent flow cases.

Incompressible flow in an S-shaped duct: Incompressible flow in an S-shaped duct of
constant area square cross-section is investigated. Two flow Reynolds numbers are
considered, Re=790 (laminar) and Re=40,000 (turbulent). A combination of the linearized
convection and the 'optimized' global pressure relaxation solvers is applied. The numerical
results are compared with the measurements of Taylor et al. [9]. The secondary tlow

phenomena in a S-duct is mainly pressure driven because ot the very smooth-bend in the



walls. Axial tlow separation is not observed. Accurate prediction of the boundary layer.
even in the laminar case, is required to capture the small but complex secondary tlows.
The grid in the cross-plane must be adequately refined in order to correctly predict this
behavior. Grids with 33 axial stations and with 31x31 or 41x41 points in the cross-plane
are prescribed for the laminar and turbulent cases, respectively. The symmetry plane grid
tor the turbulent case is shown in Fig.3 The linearized convection code is applied in the
initial phase of the computation to drive the maximum residuals down to 0.01. Thereafter.
the "optimized" fully implicit relaxation solver, with infinite time step, is automatically
initiated. In this mode, the residuals reach the prescribed levels ot tolerance, typically
0.0001, relatively fast. The convergence history of the laminar computation is depicted in

Fig.4.

Turbulent, Incompressible S-duct (Re=40,000)

Grid (33x4 1x41) along the mid-plane
I Station 5
suton *
- 3

" \
Saton!  swton? \

0 2 5

Figure 3. Typical view of the geometry and the grid in the symmetry plane



Caonvergence history for an incompressible S-duct
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Fig 4. Convergence history for a laminar, incompressible flow in an S-duct

The streamwise velocity profiles, for both laminar and turbulent flows, on the
symmetry/midplane of the S-duct, is compared with the measured data of Taylor et al. [9].
Results at several axial stations, shown in Figs. 5(a-¢) and Figs. 6(a-¢), are depicted. There
is an excellent agreement with the experimental data for both laminar and turbulent flows.
This computation requires about 4 hours for the laminar and about 6 hours for the
turbulent case on the RISC/6000 machine. This is roughly equivalent (without
vectorization) to 30 and 50 minutes, respectively, on a Cray YMP supercomputer.

In order to demonstrate the effect of the reduction in the required number of LU
inversions on the computational time, a laminar incompressible case was considered. A
single LU inversion is required by the "optimized" version of the global pressure relaxation
solver, while 174 LUs are required by the original code during each axial sweep. Since the
number of global sweeps approximately equals the number of nodes in the axial direction.

this results in an enhancement of almost 15.
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Figures 5(a-e). Comparison of the laminar axial velocity profiles on the symmetry

plane at stations 1-5 along an S-duct
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profiles for an S-duct



(b) Turbulent, 3D convergent-divergent choked nozzle: Turbulent flow in a symmetric,
convergent-divergent nozzle, with square cross-section, and an area ratio.

Ainlet/Athroat=3.41, is computed with the linearized convection procedure. The Reynolds

number is Re=5x105 based on the throat diameter. This computation is for design point
conditions, so that the pressures are prescribed at both ends ot the nozzle in accordance
with the results of quasi-1D analysis. A Mach number of 0.2 is prescribed at the inlet. As
expected, the nozzle is choked with a Mach number of unity at the geometric throat. At
the exit cross-plane, an average Mach number of 2.8 is computed. This 15 in excellent
agreement with quasi-1D thoery. A grid with 31 axial stations and a highly stretched
41x41 mesh in the cross-plane is employed. Figs.7-8 depict the Mach number and pressure
contours on a symmetry plane. The computed Mach number ratio between the inlet and

the exit are in close agreement with quasi-1D analysis.

I Supsreonic, Turbusnt Convergent-Divergent Nozzis
25 |- Symmevy plane (x-y)
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Figure 7. Mach number contours on a symmetry plane

I Supersonic, Turbutent Convergent-Divargent Nozzie
25 - Symmevy piars (x-y)
| ReaS00,000; et Mach#=d.2; A /A,=151

Figure 8. Non-dimensional pressure contours on a symmetry plane
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Figure 10(b). Mach number at the throat cross-plane.

Fig.9 depicts velocity vectors on a symmetry plane. and Figs.10(a-b) depict Mach number
at the exit and throat axial stations, respectively. Note, that unlike other NS flow solvers,
there is no deterioration in computational performance in the lower spectrum of Mach

number.



(c) Effect of back-pressure on a laminar, compressible Slow through a choked
convergent-divergent Nozzle: In order to study the effect of the back-pressure, pp'. on
the performance of a convergent-divergent nozzle, a laminar flow at Re=500 is
considered. The nozzle is identical to the one considered for the turbulent case. The grid
has 51 axial stations and 33x33 nodes in a cross-plane. Mild stretching, of about 1.1 at the
walls, is applied. This was adequate to resolve a relatively thick boundary layer associated
with the lower Re. In this study, a series of computations with difterent back pressures at
the exit was carried out. The first calculation was for a steady-state solution at design
conditions, ie., pp=pe (complete expansion). Here 'po' denotes the exit pressure that
would be attained under design conditions. From gquasi-one-dimensional theory, the

pressure ratio po/pj, for design conditions is approximately 27 for an area ratio
Ag/Athroat Of 3.31. Subsequently, the back-pressure is raised in a gradual fashion. First.
the back-pressure is increased to pp=3.6pe and a steady-state solution is obtained for this

condition with the design-point solution as an initial guess. Next, the back-pressure is

further increased to pp=6.25pe and again a steady-state solution is obtained with the
previously obtained steady-state solution at pp=3.6p. applied as the starting solution. For

this back-pressure. axial flow separation associated with oblique shock formation is

predicted. In order to assess the effect of area ratio Ag/Athroar. the flare angle of all the

walls in the divergent section of the nozzles is then reduced from 5 to 3 degrees. This

decreases the area ratio Ao/Aiprgay from 3.51 to 2.3. The convergent section of the
nozzle is not altered. The design point pressure ratio, Pe/Pin, for the modified nozzle
geometry is reduced to about 13.5 from quasi-one-dimensional analysis. The final imposed
back-pressure, previously 6.25 times the design exit pressure in the original nozzle
geometry, now reduces to 3.37 of the design exit pressure ie.. ph=3.37pe. A steady-state
solution is now obtained for the modified nozzle. For this calculation. the steady-state

solution associated with the original nozzle and pp=6.25pe. is applied as the starting

solution. As expected the reverse flow regions, that were present in the original design no



longer exists for the moditied nozzle case. This provides a rapid tool tor nozzle design

studies. This computation required only 2 hours on RISC6000.

Subsequent to the design point computation, only divergent portion ot the nozzle
need to be evaluated. As long as the nozzle remains choked any increment in the back-
pressure does not affect the flow conditions upstream of the throat. Therefore, each
steady-state solution, at higher back-pressures, was obtained relatively inexpensively. It
took approximately 7 hours on the IBM RISC/6000 machine for the design condition
computation. Each subsequent run took only about 2.5-3 hours. This translates to

approximately 50 and 18-23 minutes, respectively, on a Cray YMP supercomputer.

The effect of higher back-pressure on the pressure, skin friction, axial velocity and
cross-flow velocity is depicted in Figs. 11-14. For pp=pe or pa/pin=27. complete or
optimal expansion takes place. For py=3.57pe or pe/pin=7, axial flow separation is
imminent. This is visible from the skin friction coefficient along the lower wall in Fig. 12.

Only a slight adverse pressure gradient is evident. As the back-pressure is further

increased to pp=6.25pe Or pe/pin=4. two strong oblique shocks are generated. Behind

these shock waves the flow separates and the pressure increases to the imposed back-
pressure. Since the core the tlow is supersonic, the effect of increased back-pressure 1s
propagated upstream through the subsonic boundary layers close to the wall. The skin
friction and axial velocity clearly show the existence of the reverse tlow region. Fig.13
shows the streamlines in the (x-y) symmetry plane, wherein reverse flow regions are
clearly evident. Fig.16 depicts the streamlines in the (x-y) symmetry plane for the moditied

nozzle. As expected, the shock induced reverse flow regions disappear.
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Grid Convergence and Accuracy: In order to assess grid convergence and accuracy of
these calculations, three grids, 31x17x17, 31x33x33 and 51x33x33. with refinement in all
three directions, were considered. Calculations were pertormed at design conditions for a
laminar, compressible flow. Although Figures 17-20 suggest further grid retinement in all
three directions to obtain grid independence, the solution obtained on the tinest grid
51x33x33 can be considered reasonably accurate. All plots, except pressure, show
significant disparity between the solution obtained with a coarse 31x17x17 grid and that
obtained with finer 31x33x33 and 51x33x33 grids. The pressure, however, is not affected
by grid refinement. This is due to a predominantly inviscid nature of the tlow. However.
the accuracy ot velocities and skin triction calculation is enhanced by clustering more grid
points in the boundary layer. The effect of axial refinement is mirumal on skin friction. It.
however, increases the peak slightly of both, axial and cross-flow components of the

velocity. The skin triction appears to be affected solely by retfinement in the cross-plane.

After an initial decline in the skin friction, due to a developing boundary layer. 1t
continuously increases throughtout the length of the nozzle. Both. skin friction and
pressure plots, suggest an accelerating flow in the nozzle. Faster accleration rates are seen
in the divergent section. A sudden expansion near the throat is evident in the pressure plot.
This is also reflected in the increment of skin triction in the proximity of the throat. The

axial velocity maximum occurs closer to the walls than the center line. This is seen in the



axial velocity plot of Fig. 19. The reason being the existence of extremely thin boundary
layers on the four adjacent walls, caused by a tremendous tlow acceleration. that do not

interact with each other in the central core region. As a result, a large portion of the core

tlow remains inviscid.
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Figure 17 Skin friction coefficient C¢ on the lower wall of the (x-y) symmetry plane
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(d) Turbulent, Supersonic flow in a Generic Three-dimensional, 10° single-ramp inlet:

Turbulent, supersonic flow, in a generic three-dimensional, 10° single-ramp inlet geometry

is investigated with the ‘optimized’ solver. The inlet Mach number is Mj;je(=3.0 and the

Reynolds number is Re=3x105- Efficient simulation of complex shock patterns in such
internal configurations is examined. The grid in a symmetry plane is shown in Fig.21. In
order to study grid dependency and accuracy of the solution, computations were carried
out on three different grids. Although, grids I and II have same dimensions, i.e., 41 nodes

in the axial direction and 41x41 in the cross-flow directions, the first node in the straight



duct portion of the inlet for grid I is 0.002 away from the walls as opposed to 0.0008 in
grid II. Grid IIT has the same dimensions and distribution of mesh points in the grid II
cross-plane, but has 61 nodes in the axial direction. On average, the computation on a
41x41x41 grid takes about 45 minutes per global pressure relaxation sweep on a
RISC/6000 workstation. This is equivalent to about 6 minutes on a Cray YMP
supercomputer. A total of about 6 global sweeps are required to converge all the residuals

to the tolerance level of 0.0001.
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Figure 21. Typical view of the grid in the symmetry plane

Figs.22(a-d) depict the axial "u"” and cross-flow velocity "v" profiles along the
symmetry plane at axial stations 1 and 2. Solutions on all three grids have been used for
this comparison. There are no noticeable changes in "u”. and tor "v" there are only minor

differences.
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Figure 22(a-b). ''u’’ and ''v'' velocity profiles at "'station 1'' along the mid-plane
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Figure 22(c-d). "u" and "'v" velocity profiles at "station 2" along the mid-plane

Figs.23(a-b) depict the non-dimensional pressure on the symmetry plane lower and
upper walls. With reference to Fig.23(a), the higher pressure level, behind the strong
oblique shock, remains practically constant to the point where the ramp becomes
horizontal (x=1.0). A steep decline in the pressure profile at this point is due to an
expansion fan generated at the convex corner, x=1.0. Further downstream of this point,
the pressure profile shows a slight tendency to rise. This is due to the impingement of the
retlected oblique shock from the upper to the lower wall in the vicinity, x=1.9. Since the
intensity of the doubly retlected shock is considerably ditfused at this point. the rise in

pressure is comparatively small.
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Figure 23(a-b). Non-dimensional pressure on the lower and upper walls, respectively,

along the symmetry plane



Fig.23(b) depicts the pressure on the upper wall along the symmetry plane. In the
region, 0.0 < x < 1.0, the pressure on the upper wall remains fairly constant. The strong
oblique shock, that originates at the beginning of the ramp (x=0.0 at lower wall), impinges
the upper wall at x=1.0. This causes an adverse pressure gradient in the region, 1.0 € x <
1.4. If this negative pressure gradient is sufficiently high, it can cause tlow reversal
Subsequently, in the range, 1.4 < x < 2.0 (exit), a steady drop in pressure is observed. This
can be attributed to the intfluence of the expansion fan, that originates from x=1.0 on the
lower wall and interacts with the reflected shock. This complex interaction of shock wave.

expansion fan and boundary layer is seen in Figs.24(a-b).
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Figure 24(a-b). Mach number and non-dimensional pressure contours on the

symmetry plane

7. CONCLUSIONS

The validity of two primitive variable RNS/NS tlow solvers, for calculations from

the incompressible limit to supersonic speeds has been demonstrated. The required number
of LU inversions has been significantly reduced for the global pressure relaxation
procedure. As a result. a speed-up of almost 15 has been achieved for an incompressible
laminar tlow in a S-shaped duct. For non-separated supersonic tlows, this method is even
more efficient. The efficiency and the validity of the time-marching, linearized convection
model presented herein. has also been validated with S-duct, and convergent-divergent

choked nozzle computations. Agreement with the data has been quite good thoughout.
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Effect of back-pressure (p,) and divergence angle on the flow
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Figure 11 Comparison of pressure on the lower wall of the symmetry plane for various
imposed back-pressures



Effect of back-pressure (p,) and divergence angle on the flow
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Figure 12 Comparison of skin friction coefficient C ron the lower wall of the symmetry
plane for various imposed back-pressures



Effect of back-pressure (p,) and divergence angle on the flow
Grid 51x33x33 ; Re=500
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Figure 13 Comparison of axial velocity ''u'' at the exit cross-plane for various

imposed back-pressures



Eftect of back-pressure (p,) and divergence angle on the flow
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Figure 14 Comparison of cross-flow velocity ''v' at the exit cross-plane for various

imposed back-pressures



Effect of increment in the back-pressure for

Two oblique shocks cause separation in the divergent portion

5 flow in a "choked" Convergent-Divergent nozzle
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Figure 15 Streamlines on the (x-y) symmetry plane for the imposed back-pressure of



Effect of lowering the wall divergence angle with high back-pressure

i
S Flow in a "choked" Convergent-Divergent nozzle
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Figure 16 Streamlines on the (x-y) symmetry plane for the imposed back-
pressure of pp=3.37pe & A¢/Athroat of 2.3
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Figure 17 Skin friction coefficient C¢ on the lower wall of the (x-y) symmetry plane
for 31x17x17, 31x33x33 and 51x33x33 grids
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Figure 18 Non-dimensional pressure on the lower wall of the (x-y) symmetry plane

for 31x17x17, 31x33x33 and 51x33x33 grids



Computation of compressible flow in a C-D nozzle on R AL
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Figure 19 Axial velocity ''u" at the throat for 31x17x17, 31x33x33 and 51x33x33
grids
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i Grid {on the symmetry plane): 41(axial) 41x41(x-plane)
i Mach number at the inlet= 3.0
05 3D Supersonic, Generic Inlet Geometry
' Square cross-section at the exit
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Figure 21. Typical view of the grid in the symmetry plane
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Figure 22(a-b). "u" and "v" velocity profiles at "station 1" along the mid-plane
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Turbulent, Supersonic flow in a generic inlet
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Figure 22(c-d). "u'" and "v" velocity profiles at "station 2" along the mid-plane
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Pressure along the upper wall af the mid-plane
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Figure 23(a-b). Non-dimensional pressure on the lower and upper walls, respectively,
along the symmetry plane
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